تصویر انتخاب شده
نمایش بیشتر
تصاویر بیشتر

کتاب Graph Representation Learning

0
فروشگاه آنور آذربایجان شرقی
ویژگی های محصول
تعداد صفحه: 161 زبان:انگلیسی ویرایش اول تاریخ انتشار: 2020
متاسفانه فعلا موجود نیست!
متاسفانه فعلا موجود نیست!
مشخصات
سایز 19.7*2.5*24.1
دوام کیفیت چاپ بالا
جنس کتاب
وزن 476

توضیحات

ارسال کتاب های زبان اصلی در بازه زمانی 8 الی 12 روز کاری انجام میشود.
---------------------------------------------------------------------------------------------
https://www.amazon.com/Representation-Learning-Synthesis-Artificial-Intelligence/dp/1681739658
====================================================
raph Representation Learning

by William L. Hamilton (Author)
Graph-structured data is ubiquitous throughout the natural and social sciences, from telecommunication networks to quantum chemistry. Building relational inductive biases into deep learning architectures is crucial for creating systems that can learn, reason, and generalize from this kind of data. Recent years have seen a surge in research on graph representation learning, including techniques for deep graph embeddings, generalizations of convolutional neural networks to graph-structured data, and neural message-passing approaches inspired by belief propagation. These advances in graph representation learning have led to new state-of-the-art results in numerous domains, including chemical synthesis, 3D vision, recommender systems, question answering, and social network analysis.

It begins with a discussion of the goals of graph representation learning as well as key methodological foundations in graph theory and network analysis. Following this, the book introduces and reviews methods for learning node embeddings, including random-walk-based methods and applications to knowledge graphs. It then provides a technical synthesis and introduction to the highly successful graph neural network (GNN) formalism, which has become a dominant and fast-growing paradigm for deep learning with graph data. The book concludes with a synthesis of recent advancements in deep generative models for graphs — a nascent but quickly growing subset of graph representation learning.These advances in graph representation learning have led to new state-of-the-art results in numerous domains, including chemical synthesis, 3D vision, recommender systems, question answering, and social network analysis.

ابتدا وارد حساب خود شوید و بعد نظراتتان را با ما به اشتراک بگذارید!
ورود

نظرات

محصولات پیشنهادی برای شما
مشاهده همه
ورود به حساب آنور

ابتدا وارد حساب خود شوید!

ورود به حساب

این کالا به سبد خرید شما اضافه شد!

مشاهده سبد خرید

مشاهده لیست

ثبت نظر

کتاب Graph Representation Learning

فروشگاه آنور | آذربایجان شرقی

ثبت امتیاز

حداکثر ۳ تصویر (هر کدام تا ۵ مگابایت):

اشتراک گذاری